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Brassica tournefortii (Gouan) is a winter
annual native to arid deserts of North Africa
and the Middle East (Minnich and Sanders
2000), as well as to the southern and eastern
portion of the Mediterranean rim, where it
thrives on marine beaches and sand dunes
(Thanos et al. 1991). This species is consid-
ered weedy in its native environments (Narain
and Prakash 1972, Prakash and Hinata 1980). 

Considered an aggressively invasive weed
of disturbed sites, beaches, and cultivated
areas in southern Australia, B. tournefortii is
capable of causing significant yield loss in
crops, even when present at low densities
(Chauhan et al. 2006). Brassica tournefortii
biotypes (species sharing the same genotype)
with resistance to the ALS inhibitor chlorosul-
furon, which blocks amino acid synthesis, have
been documented in Australia (Boutsalis et al.
1999, Chauhan et al. 2006). In North America,
B. tournefortii occurs in Arizona, California,
Nevada, New Mexico, Texas, and Utah. It has
recently been listed as a noxious weed in
Nevada and is one of the top nonnative plant
concerns in deserts of the southwestern
United States (U.S. Department of Agriculture
2005). Brassica tournefortii was first collected
in North America in 1927 at Coachella in

Riverside County, California, and was presum -
ably introduced with date palm shipments from
the Middle East (Minnich and Sanders 2000).
The specimen was incorrectly identified as B.
arvensis until recently annotated to B. tourne-
fortii (Minnich and Sanders 2000). In southern
Nevada this species was first collected near
Lake Mead National Recreation Area (LMNRA)
in 1975 (Wesley E. Niles Herbarium), and
subsequently it has spread into a variety of
habitats, including sandy beaches, gravelly
washes, roadsides, construction sites, and open
deserts. 

At LMNRA, B. tournefortii germinates in
the late fall and early winter, after seasonal
rains, and typically flowers and sets fruit by
the end of March. This species establishes
itself earlier in the spring season than most
native annuals, which may contribute to its
effectiveness as an invasive species in the
southwestern United States. A similar phe-
nomenon occurs in Australia, where B. tourne-
fortii’s early establishment affects cereal crop
production (Moore and Williams 1983).

In some years annual populations of B.
tournefortii are absent or scant, and in the fol-
lowing years there can be many plants, dem -
onstrating the existence of a substantial seed
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bank (Montalvo et al. 2002). This pattern sug-
gests that seeds may cycle through dormancy
and conditional dormancy depending on envi-
ronmental conditions. We have observed B.
tournefortii following a boom-or-bust pattern in
the Mojave Desert. Also, late winter or spring
rains have resulted in a 2nd generation (setting
fruit in May) of germinants in a single season
at LMNRA, a pattern described as typical of
nonstrict (or facultative) winter annuals. Main-
tenance of dormancy and timing of germination
are important phenological adaptations of weeds
to their environment (Baskin and Baskin 1985). 

At the end of the season, B. tournefortii
plants can break off and tumble across the
landscape, dispersing seeds along the way.
Dispersal also occurs by rodent caching and
perhaps by birds such as pigeons. Preliminary
tests showed that B. tournefortii seeds are
capable of germinating (in a drawer, on moist
filter paper, and at room temperature) soon
after maturing (86%) and after 10 months of
storage at room temperature (91%). After col-
lection at maturity, seeds from a closely related
species, B. napus, germinated under labora-
tory conditions and were considered nondor-
mant (Tokumasu and Kakihara 1990), as were
the seeds of the related mustard species Ara-
bidopsis thaliana (Baskin and Baskin 1971).
When left in the field, winter annuals will typ-
ically disperse seeds in late spring or early
summer and, in some cases, after tempera-
tures have risen above those required for ger-
mination (Baskin and Baskin 2001). Brassica
tournefortii may share this characteristic, as
summer germination has not been observed at
LMNRA even after summer rains.

Preliminary studies at LMNRA found that
seeds survive submergence in tap water (11%
germination after 32 days submergence) and
that B. tournefortii plants can produce >10,000
seeds per plant, occur in densities of 5 to 625
plants ⋅ m–2, and grow taller than many native
annuals (14 native annual species heights
ranged from 9 to 30 cm while B. tournefortii
height averaged 50 cm). These preliminary
data show B. tournefortii’s capability of crowd-
ing and shading native annual species in the
Mojave Desert. We suspect that the spread of
B. tournefortii at LMNRA via water is signifi-
cant: dried plants can float from beach to beach
with seed pods still intact, and seedlings can
become established along shorelines around
the lake (D. Bangle personal observation).

In some areas B. tournefortii has begun to
move from roadsides and beaches into the sur-
rounding open desert. Because of this, it may
be a direct threat to the U.S. native annual
flora (U.S. Department of Agriculture 2005).
Understanding how seeds are dispersed in a
particular environment enables managers to
make better informed decisions, especially
when manpower and funding are limited. Our
experiments were designed to increase under -
standing of B. tournefortii germination and to
provide information that may be used to
improve management decisions concerning this
species. We measured seed viability, tolerance
of submergence in water, and the effects of sa -
linity, light, and temperature on germination.

METHODS

General Experimental Procedures

Seeds of B. tournefortii were collected in
southern Nevada during spring 2001 for a
longevity experiment and in spring 2003 for
the remaining experiments. Germination ex -
periments began 5 months (2003 seed source)
and 2.8 years (2001 seed source) after collec-
tion. Seeds were stored in a paper bag at room
temperature. Unless otherwise noted, seeds
were placed in petri dishes (50 seeds per dish;
3 dishes per experiment) on filter paper regu-
larly moistened with deionized water, and
dishes were kept in a drawer in a dark room
(no natural or artificial light) at room tempera-
ture (20° +– 1°C). While counting germinants,
we briefly exposed petri dishes to minimal
artifical light (except dishes in the dark experi -
ment). All dishes were stacked singly or doubly,
and their position in the drawer was rotated
at random during the germination process.
Seed germination (radicle protrusion) was mon -
itored until germination ceased (3–12 days). 

Experiment 1: Viability/Storage
Temperatures

Seed viability was tested by measuring ger-
mination of seeds stored (dry, in petri dishes)
at each of 6 temperatures (–15°, 5°, 10°, 25°,
35°, and 45°C). Each week for 10 weeks, 3
petri dishes were removed from each storage
temperature for germination. We also mea-
sured long-term viability of seeds collected in
2001 (stored dry, at room temperature in
unsealed manila envelopes for 2.8 years prior
to germination test).
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Experiment 2: Submergence under 
Waters of Lake Mead

To test the effects of submergence in Lake
Mead on B. tournefortii germination, we placed
seeds in 30 eight-ounce water bottles (50 seeds
per bottle). We covered the tops of the bottles
with 10 × 10-cm mesh cloth squares (mesh
opening: 0.5 mm) to allow flow of lake water
in and out of the bottles without losing seeds.
The bottles were fastened to metal stakes,
which were hammered into the lake bottom
until the bottles were approximately 30 cm
below the water surface. Every week for 10
weeks (week 7 was not tested), we removed 3
bottles and tested germination in the lab.

Experiment 3: Salinity

To test the effects of salinity on germina-
tion, we used a 2:1 molar solution of NaCl and
CaCl2 chosen to represent the salts that may
be present in the Lake Mead area (Barnes
2004, Walker et al. 2006). An initial solution of
13.2 dS ⋅ m–1 (8448 ppm soluble salts) was
diluted to 7 concentrations (0.0498 dS ⋅ m–1

[32 ppm], 0.376 dS ⋅ m–1 [241 ppm], 0.912 dS ⋅
m–1 [584 ppm], 1.58 dS ⋅ m–1 [1011 ppm], 2.29
dS ⋅ m–1 [1466 ppm], 3.20 dS ⋅ m–1 [2048
ppm], and 6.66 dS ⋅ m–1 [4262 ppm]), and 2
mL of each solution was added to designated
petri dishes (3 per concentration for a total of
21 dishes). Additional solution (approximately
1 mL every other day) was added as necessary
to keep the filter paper moist.

Experiment 4: Germination 
Temperature Effects

To test temperature effects on germination,
we used filter paper kept moist at 10 tempera-
tures (5°, 10°, 16°, 18°, 20°, 25°, 28°, 32°, 35°,
and 40°C) for 5 days. Glass petri dishes were
used for the 35°C and 40°C tests.

Experiment 5: Light/Dark Germination

To test the effects of light/dark conditions
on germination, we conducted 4 tests. Six
petri dishes with 50 seeds each were prepared
in low-light conditions using filter paper and 3
mL of deionized water. Once the water was
added, each dish was immediately wrapped in
aluminum foil, placed in a drawer, and kept at
room temperature. Two dishes were removed
on each consecutive day for 3 days and dis-
carded after germinants were counted. 

Light tolerance in B. tournefortii was tested
using 3 different light conditions. During the
following light experiments, we did not isolate
specific wavelength regions or control for tem -
perature. Photosynthetic photon flux (PPF)
was measured (using a Spectrum Technologies,
Inc., model BQM quantum light meter), as
was temperature (using a HOBO H8 Pro Series
logger) at seed level. In test 1, a Phillips 15-
watt grow light and a 60-watt incandescent
bulb were used (PPF measured 127 μmol ⋅
m–2s–1, temperature 30°C) in 24-hour light
conditions.

In the 2nd light experiment, we used a 15-
watt General Electric warm white florescent
bulb, as well as a 60-watt incandescent bulb,
in 24-hour light conditions. In this test, PPF
measured 52 μmol ⋅ m–2s–1 and the tempera-
ture was 27°C.

In the 3rd light experiment, a Phillips nat-
ural-light florescent bulb, which emitted the
full spectrum of natural daylight, was used (no
incandescent bulb) in 24-hour light condi-
tions. The PPF in this test measured 20 μmol ⋅
m–2s–1 and the temperature was 25°C.

Statistical Analyses

Statistical analyses were performed with
the software SAS JMP (SAS Institute 2002).
We used a 1-way ANOVA to compare means
in all experiments except experiment 1, where
we used a 2-factor factorial design consisting
of 6 temperature levels (–15°, 5°, 10°, 25°, 35°,
and 45°C) and 10 storage levels (1–10 weeks).
For mean separation, we used Tukey’s test
with α = 0.05. Data for all experiments, except
experiment 2, approximated equal variance
(Levene’s test) and normality assumptions
(Shapiro-Wilk test). In experiment 2, when we
tested arcsine and square-root transformation,
the variance remained unequal, so we ran a
Welch ANOVA. Results were consistent with
the traditional ANOVA. In this paper we
report traditional ANOVA results for all
experiments.

RESULTS

Germination of B. tournefortii under stan-
dard conditions (deionized water, room tem-
perature) was complete within 4 days. Experi-
ments 2 and 3 showed delayed germination
with completion at 12 and 8 days, respectively.
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Experiment 1: Viability/Storage 
Temperatures

Main effects were significant for week (F =
2.72, P = 0.0064) and temperature (F = 4.85,
P = 0.0004), and they did not interact (F =
1.40, P = 0.0767). The range of percent germi-
nation across all treatment combinations was
91%–100% (Table 1). Germination of B. tour -
nefortii seeds from the 2001 seed source
stored at room temperature was 99.3% after 3
days. Thus, no loss in germinability occurred
during nearly 3 years of shelf storage.

Experiment 2: Submergence under 
Waters of Lake Mead

One-way ANOVA was significant (F =
6.60, P = 0.0004), with >70% of B. tournefortii
seeds viable for the first 3 weeks of submer-

gence in Lake Mead. Viability gradually de -
clined to <10% after 8–10 weeks of submer-
gence (Fig. 1). Week-4 bottles had a significant
amount of algae in them, which may have
affected germination (2 petri dishes had 0%,
and the 3rd had 38% germination; seeds
molded quickly).

Experiment 3: Salinity

Germination decreased as soil salinity in -
creased (P < 0.0001; Fig. 2), with minimal ger-
mination at 3.2 dS ⋅ m–1 (2%) and no germina-
tion at 6.66 dS ⋅ m–1.

Experiment 4: Germination 
Temperature Effects

Germination occurred between 16° and
32°C but not at 5°, 10°, 35°, or 40°C (P < 0.0001;
Fig. 3). Highest germination occurred at 16° to

2008] BRASSICA TOURNEFORTII GERMINATION 337

TABLE 1. Comparison of viability of Brassica tournefortii seeds (collected at Lake Mead National Recreation Area,
Mojave Desert) at varying storage temperatures (x– –+ s, n = 3). Seeds were stored from 1 to 10 weeks at a range of tem-
peratures (–15°, 5°, 10°, 25°, 35°, and 45°C) before removal and placement in a drawer at room temperature for germina-
tion. Germination ceased after 3 days. ND = no data.

Temperature (°C)____________________________________________________________________________________
Week –15 5 10 25 35 45

1 98 –+ 2 94 –+ 3 95 –+ 5 95 –+ 3 99 –+ 1 97 –+ 4
2 97 –+ 3 95 –+ 4 97 –+ 1 97 –+ 1 99 –+ 1 97 –+ 1
3 97 –+ 3 96 –+ 3 94 –+ 2 99 –+ 1 99 –+ 1 99 –+ 2
4 97 –+ 1 91 –+ 1 98 –+ 0 99 –+ 1 97 –+ 4 99 –+ 2
5 94 –+ 3 99 –+ 1 99 –+ 1 96 –+ 4 99 –+ 1 97 –+ 3
6 99 –+ 1 98 –+ 3 100 –+ 0 98 –+ 3 98 –+ 2 98 –+ 3
7 99 –+ 1 95 –+ 3 95 –+ 5 95 –+ 5 99 –+ 1 98 –+ 2
8 ND 99 –+ 1 96 –+ 3 99 –+ 1 97 –+ 3 99 –+ 2
9 96 –+ 4 93 –+ 1 94 –+ 2 96 –+ 2 96 –+ 0 95 –+ 1

10 99 –+ 1 93 –+ 2 97 –+ 3 96 –+ 0 98 –+ 3 99 –+ 1
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Fig. 1. Mean germination percentages (n = 3) for Brassica tournefortii seeds after submergence at Lake Mead
National Recreation Area. Seeds were germinated in a drawer in a dark room at room temperature (20° –+ 1°C). Petri
dishes were briefly exposed to artificial light while germinants were counted. Germination ceased after 12 days. Bars
represent 1 standard deviation. Means with the same letter do not differ (P > 0.05).
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28°C (95–100% +– 4%); at 32°C germination
dropped to 42% +– 7%.

Experiment 5: Light/Dark Germination

Main effects were significant for light and
dark germination (F = 52.1, P = 0.0001),
with dark germination at 95% +– 1% and ger-
mination under 3 light conditions (PPF at 127,
52, and 20 μmol ⋅ m–2s–1) at 87% +– 2%, 85% +–
10%, and 31% +– 8%, respectively.

DISCUSSION

Invasive plant species compete with native
plants for nutrients, water, and sunlight. Based
on characteristics such as high seed output,
high and efficient seed dispersal, early phenol -
ogy, and rapid growth rate (Rao 2000), B. tour -
nefortii is a successful invader of the Mojave
Desert. Our results suggest several possible
mechanisms to explain the rapid expansion of
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Fig. 2. Mean germination percentages (n = 3) for Brassica tournefortii seeds at varying NaCl:CaCl2 2:1 molar con-
centrations. Seeds were germinated in a drawer in a dark room at room temperature (20° –+ 1°C). Petri dishes were briefly
exposed to artificial light while germinants were counted. Germination ceased after 8 days. Bars represent 1 standard error.
Means with the same letter do not differ (P > 0.05).
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Fig. 3. Mean germination percentages (n = 3) for Brassica tournefortii seeds at varying germination temperatures.
Seeds were germinated in a drawer in a dark room at room temperature (20° –+ 1°C). Petri dishes were briefly exposed to
artificial light while germinants were counted. Germination ceased after 2–6 days. Bars represent 1 standard error.
Means with the same letter do not differ (P > 0.05).
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B. tournefortii in the Mojave Desert. Effective
dispersal techniques are key attributes that
ensure a plant species’ success. Seeds of many
weed species (including B. tournefortii), when
imbibed, have a mucilaginous seed coat,
which aids in dispersal (Young and Evans
1973) or can physically act as an oxygen and
water barrier, thus delaying germination until
conditions are suitable (Witztum et al. 1969).
A mucilaginous seed coat appears to be key to
the spread of B. tournefortii along the shore-
line and in other areas around LMNRA. The
imbibed seeds stick to tires, shoes, boats, and
the plant itself. Wind patterns, combined with
a nearby water body (Lake Mead), appear to
have influenced dispersal of B. tournefortii, as
senesced plants (seeds intact) have been
observed floating across Lake Mead (D. Ban-
gle personal observation). Our study provides
evidence that B. tournefortii seeds can survive
in Lake Mead with significant germination
after 6 weeks of submergence (Fig. 1), allow-
ing enough time for B. tournefortii plants to
disperse to other shoreline areas while floating
with the currents.

Brassica tournefortii did not show a decline
in germinability over the time period tested or
under varying storage temperatures. These
data show no meaningful differences in actual
averages, so it is unclear whether statistical
results have practical significance. Brassica
tournefortii seeds can remain viable in dry
storage, showing no sign of decline in germi-
nation after nearly 3 years. Long-term seed
burial studies are needed to determine the
age–viability relationship of B. tournefortii seeds
in the natural environment. A study on seed
longevity in B. napus found that seeds remain
viable in the soil for 5–10 years (Schlink 1998,
Lutman et al. 2003). Studies by Chauhan et al.
(2006) and Mohler and Galford (1997) found
that germination of B. tournefortii and B. napus
seeds located at the surface are susceptible to
loss from germination or desiccation relatively
quickly, while seeds located deeper in the
soil (via tilling or disturbance) remain viable
longer, suggesting that near-surface conditions
are more suitable for germination, pathogenic
attack, and granivory. 

Seeds of some winter annuals are physio-
logically ready to germinate at any time of year
if proper temperature and moisture conditions
are provided (Baskin and Baskin 2001). Ger-
mination of B. tournefortii under constant tem-

peratures in the lab occurred between 16° and
32°C. Thanos et al. (1991) found an even wider
range of germination temperatures (10°–30°C)
for B. tournefortii growing in Greece, but opti -
mum germination temperatures were very simi-
lar between that study and ours. The lack of
germination at lower temperatures in our study
may be the result of differences in experimen-
tal design or among genetic variants of B.
tournefortii from various geographic locations. 

At LMNRA we have observed a 2nd-gener-
ation germination event occurring in the early
spring, which suggests that at least a portion of
freshly matured B. tournefortii seeds do not
experience primary dormancy, and those that
do not may germinate in the field soon after
ripening, if conditions are suitable. Equally, a
2nd-germination event in the spring from the
existing seed bank is not uncommon for facul-
tative winter annuals (Baskin and Baskin 1971,
2001). It appears that temperature may be the
overriding factor controlling germination of B.
tournefortii within the Mojave Desert during
mid- and late summer. This limiting factor is
also found in other winter annuals that shed
their seeds in spring (Baskin and Baskin 1971).

Significant germination under dark condi-
tions at optimal temperatures (20°C) was found
in the current study, as well as in studies by
Delipetrou et al. (1993) and Thanos et al. (1991).
Light-sensitivity results differed between Deli-
petrou et al. (1993), Thanos et al. (1991),
Chauhan et al. (2006), and our study. Chauhan
et al. (2006) showed results comparable to our
3rd light test under similar temperature con-
ditions (20°–25°C), but found that B. tourne-
fortii seeds were inhibited by light at subopti-
mal temperatures. Thanos et al. (1991) and
Delipetrou et al. (1993) studied photoinhibi-
tion of seed germination (20/13°C and 20°C,
respectively) and found minimal or total inhi-
bition (10% and 0%, respectively). Differing
results between studies may be from differ-
ences in experimental design, length of after-
ripening of seeds used in each experiment, or
different genetic variants between regions. In
the current study, the differences in results
between the 3 tested light conditions cannot
be fully explained based on limitations in ex -
perimental design. We can say, however, that
the spectrum of light and the location of the
most intense peaks were different in the first 2
experiments compared to the 3rd. A grow light
(used in light experiment 1) and a warm white
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light (used in light experiment 2) show strong
peaks in the blue and red portions of the spec-
trum, and an incandescent bulb showed peaks
in the red and far-red portion. The 3rd light
experiment using only a natural light, which
does not emit strong peaks in the red region of
the spectrum, showed a decrease in germina-
tion compared to the first 2 tests. Absorption
of red light is known to promote germination
in some species (Baskin and Baskin 2001). The
difference in red light intensity between
experiments may have caused the decrease in
germination, but overall our results do not
support other studies that show complete pho-
toinhibition of seed germination in B. tourne-
fortii. It is possible that in different environ-
ments different germination responses prevail,
or that a subset of responses is rare in natural
populations (contrary to their detection in lab-
oratory settings) and that variation in the
species is more important for long-term evolu-
tionary potential than for short-term ecological
flexibility (Mathews 2006). A more controlled
study evaluating light sensitivity in B. tourne-
fortii seed from the Mojave Desert is needed.

Brassica tournefortii thrives on marine
beaches in its native habitat, suggesting that it
likely has a higher tolerance for saline soils
than other desert annuals do. Support for this
idea stems from observations that B. tourne-
fortii is found not only on a range of substrate
types but also in the leaf litter of Tamarix
ramosissima. The invasive species T. ramosis-
sima and T. aphylla are established along the
shoreline and water courses surrounding
LMNRA and can alter soil chemistry by
increasing salinity levels (Walker and Smith
1997, Di Tomaso 1998, Walker et al. 2006).
Walker et al. (2006) and Barnes (2004) tested
effects of soil salinity on seed germination in
T. aphylla and found that germination occurred
under low salt concentration (18% at 1.85 dS ⋅
m–1 [1184 ppm]; NaCl/CaCl2 2:1 molar solu-
tion), comparable to germination of B. tourne-
fortii, which showed similar results at a higher
concentration (18% at 2.29 dS ⋅ m–1 [1466
ppm], NaCl/CaCl2 2:1 molar solution). Chauhan
et al. (2006) tested the effects of soil salinity on
B. tournefortii and found that under dark con-
ditions, 18% of seeds germinated at 160 mM
(9344 ppm) NaCl. They also found signifi-
cantly less germination when experiments
were conducted under light/dark conditions
(almost complete inhibition at 80 mM [4672

ppm] NaCl). Salinity tolerance, as it affects
germination in the related species B. napus,
was tested at varying salt concentrations
(NaCl/CaCl2 2:1 molar solution) in combina-
tion with various temperatures (Puppala et al.
1999). Results showed 28% germination in the
15°–25°C range at salinity levels as high as
21.6 dS ⋅ m–1. 

We have noted that B. tournefortii displays
patterns of boom-or-bust years typical of annual
plant populations, demonstrating the potential
existence of a substantial seed bank. When a
substantial seed bank exists, seeds may cycle
through different stages of dormancy, depend-
ing on environmental conditions. Because main -
tenance of dormancy and timing of germina-
tion are important phenological adaptations of
weeds to their environment, the annual dor-
mancy cycle is a critical component of predic-
tive models for weed pest management (Baskin
and Baskin 1985). Research on dormancy cycles
of B. tournefortii is needed to assist land man-
agers in controlling this species under unpre-
dictable climatic conditions such as those ex -
perienced in the Mojave Desert.

CONCLUSIONS

Brassica tournefortii may pose a consider-
able threat to native annuals because of its
early seedling emergence combined with an
ability to germinate in moderately saline soils,
at a wide range of temperatures, after extended
storage, and after extended submergence.
Salinity tolerance can be an important charac-
teristic of an invasive plant species, enabling it
to take advantage of open niches. The ability
of B. tournefortii to take advantage of and
effectively reproduce in habitats altered by
Tamarix spp., as well as in other naturally
occurring saline habitats, adds to management
concerns for controlling this species. Control
efforts for B. tournefortii appear to be most
efficient early in establishment while plants
are still in the rosette stage and can simply be
uprooted without the need for time-consum-
ing bagging and removal. Ideally, land man-
agers in the Mojave Desert should initiate
surveys for B. tournefortii soon after rainfall
events (occurring at temperatures between
16° and 32°C). At Lake Mead NRA, managers
armed with the knowledge that B. tournefortii
seeds can survive submergence for several
weeks and that senesced plants can disperse 
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to other shoreline areas (previously isolated
from direct contact with B. tournefortii infesta-
tions) can increase the effectiveness of their
control efforts by concentrating on eradicating
plants in areas that act as vectors to uninfested
areas. This information may be vital to land
managers in other areas of the country who deal
with invasive species that form mucilaginous
seed coats such as B. tournefortii does. Under-
standing dispersal mechanisms in a particular
environment enables managers to make better
informed decisions concerning control efforts.

Studies of the principles of environmental
control of germination may aid in the interpre-
tation and, if possible, prediction of the field
behavior of troublesome weeds (Baskin and
Baskin 1985). Understanding specific require-
ments of B. tournefortii can help managers
prepare control efforts each year in an adap-
tive management style. By addressing some of
the gaps in our knowledge of the physiological
limitations of B. tournefortii seeds in the
Mojave Desert, this study allows managers to
employ more effective management techniques
and provides baseline information for use in
demographic models. Further research is
needed on seed longevity in the soil, herbicide
effectiveness, resource use, reproductive biol-
ogy, competition with native species, and
annual dormancy cycles, including confirmation
of primary dormancy, in order to make appro-
priate weed control decisions concerning B.
tournefortii in the southwestern United States.
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